Defeasible Decision Making in a Multi-robot
Environment

Edgardo Ferretti!, Nicolds Rotstein®3, Marcelo Errecalde!, Alejandro
Garcia?3. and Guillermo Simari®

1 Laboratorio de Investigacién y Desarrollo en Inteligencia Computacional
Universidad Nacional de San Luis, Argentina.
{ferretti ,merreca}@unsl.edu.ar
2 Consejo Nacional de Investigaciones Cientificas y Técnicas
3 Department of Computer Science and Engineering
Universidad Nacional del Sur, Bahia Blanca, Argentina.
{ndr,ajg,grs}@cs.uns.edu.ar

Abstract. In this work, we present a Defeasible Logic Programming
approach to decision making in a multi-robot environment. It will be
shown how a successful tool for knowledge representation and defeasible
reasoning could be applied to the problem of deciding which task should
be performed next. Besides, through several examples, we aim to show
how flexible is this approach to program the robots’ preference policy,
considering a simple application domain with real K hepera 2 robots.

1 Introduction

Decision making models for autonomous agents have received increased atten-
tion, particularly in the field of intelligent robots. The proposed models are
often based on formal theories of decision. such as Classical Decision Theory (1],
Qualitative Decision Theory [2] and BDI logics [3]. In other cases, models from
neuroscience. cognitive psychology and ethology are considered. In these models.
the agents’ decision making process is an emergent phenomenon of the interac-
tion of elemental behaviors [4]. An established approach to decision making in
robotic systems is that of reactive decision systems. In such systems the decision
process is usually dedicated to the selection of the action to be executed, based
on the current perceptual information with little (if any) pre-processing.

When applicable, the reactive approach has the advantages of simplicity and
speed. However, there are domains in which reactive approaches to decision
making become exceedingly difficult to apply ¢r may not intuitively describe the
behavior desired. In such cases, the agent’s decision can be partly determined by
immediate perceptual data but may also include a complete history of previous
perceptions and decisions. The agent may also need to consider questions such as:
Which is the more appropriate goal to pursue in the currenl situation? or Which
one of the alternative plans do I have to select to reach a certain goal? Further
complicating matters are that the information used in the decision process is (in
most domains) incomplete and potentially inconsistent.

© A. Gelbukh, A. Kuri (Eds.) Received 16/06/07
Advances in Artificial Intelligence and Applications Accepted 31/08/07
Research in Computer Science 32, 2007, pp. 150-160 Final version 17/09/07

Defeasible Decision Making in a Multi-Robot Environment 151

In this paper we will show how a Defeasible Logic Programming approach
could be applied in a robotic domain for knowledge representation and reasoning
about which task to perform next. At this end, we have selected a simple appli-
cation domain where real robots perform cleaning tasks. We use the K hepera 2
robot [5], a miniature mobile robot ideal for this kind of experimentation.

The experimental environment consists of a square arena of 100 units per side
which is conceptually divided into square cells of 10 units per side each. In this
environment, more than one robot could be acting at the same time, but there
is no communication among them. There is a global camera which provides the
necessary information to perform their activities. The store is a 30 x 30 units
square on the top-right corner and represents the target area where the boxes
should be transported. There are boxes of three different sizes (small, medium
and big) spread over the environment. At most two boxes can be stacked, but a
box cannot be stacked on top of a smaller box. Thus, big boxes are always on the
floor. Figure 1 shows four different scenarios of the above-described environment,
depicted in a schematic way. Due to space restrictions, in each scenario, only the
portion of the arena containing the involved objets is shown.

; boz I, boz3 '
boz3 i store boz1, STORE bozl} STORE W _ | STORE
L T o bas
khep2
boz2 -] bozxl M
boz2 boz2 boz2
kg& kheplw A ep2
khep1 oz 04 khep1
box!
(a) (b) (c) (d)

Fig. 1. Four different scenarios

Since in our proposed domain several robots cooperate and there is no com-
munication among them, a robot will not be able to predict exactly the behavior
of its partners. Therefore, the robots cannot perform a globally optimized task.
In contrast, they will reason about which box is more convenient to select next.
To perform the reasoning, a robot will use the perceptual information about the
boxes and other robots, and its preferences which will be represented with de-
feasible rules. For example, a robot could prefer the smallest box, or the nearest
one, or the box that is nearest to the store. As we will show below, these prefer-
ences will be defeasible and they may change according to the current situation
or the presence of other robots. Arguments for and against selecting a box will
be considered in order to select the more appropriate one.

A robot capable of solving this kind of problems must at least address the
following issues: to perceive the surrounding world, to decide which goal has to be
reached, and to have the capabilities for reaching this goal. Several architectures
have been proposed in the literature which provide the agents with these skills [6-
8]. In this work, we only consider the necessary reasoning processes to make

152 Edgardo Ferretti, Nicolas Rotstein, Marcelo Errecalde, Alejandro Garcia, et al.

decisions about which is the most suitable box to be transported by each robot.
We are not going to consider problems related to the implementation of low-level
actions and sensorial perception. Moreover, some of the aspects related to the
sensorial and effectorial support for the Khepera robots have received attention
elsewhere [9].

The paper is organized as follows. In Sect. 2, we describe how the robots
represent their knowledge and present a succinct overview of the reasoning for-
malism they use. Then, Sect. 3 shows how the decision process is performed
through several examples, in which one or more robots are working together in
the environment. Finally, Sect. 4 puts forward the conclusions and related work.

2 Khepera Robots with Argumentative Reasoning

In our approach, knowledge representation and reasoning for decision making
will be done using the Khe-DeLP framework [9]. Khe-DeLP is a layered frame-
work that provides facilities to the Khepera community for programming high-
level robots’ behavior using an argumentative approach. In Khe-DeLP, upper
layers are dedicated to cognitive robotics implementations, whereas lower-level
layers are hardware-oriented and allow interaction with real Khepera robots. The
most abstract layer in this framework includes a Defeasible Logic Programming
(DeLP) interpreter, thus, providing support for knowledge representation and
high-level reasoning capabilities. DeLP is based on an argumentative formalism
suitable for reasoning in real environments, i.e., scenarios where the information
that the robot has about its environment changes dynamically and it is usually
incomplete.

In DeLP (see [10] for a complete description), knowledge is represented with
a DeLP-program P that contains facts, strict rules and defeasible rules. When re-
quired, P is denoted (IT, A) distinguishing the subset IT of facts and strict rules,
and the subset A of defeasible rules. Facts are ground literals representing atomic
information or the negation of atomic information. In our application examples,
robots’ perception will be represented with facts, e.g., nearer_store(boz2, bozl).

Strict Rules are denoted Lo« Li,...,L, and represent firm information,
whereas Defeasible Rules are denoted Lo— Ly, ..., L, and represent tentative
information. In both cases, the head Lq is a literal and the body {L;}:>o is a set of
literals. As usual in Logic Programming, variables are denoted with an initial up-
percase letter. Figure 2 shows the DeLP-program that will be used in our applica-
tion examples. There, for example, the strict rule “choose(R, B) — unique(B)”
represents that “if B is the only box in the environment, then it must be cho-
sen by robot R”, and “~choose(R, B)« on(Oboz, B)" states that “if B has a
box Oboz on its top then do not choose B”. In the same figure, the defeasi-
ble rule “choose(R, B)— better(R, B,Oboz)” states that “ if box B is better
than box Oboz, then robot R has a (defeasible) reason for choosing B”, whereas
“~choose(R, B) — better(R, Oboz, B)" states that “if there is other box that is
better than B, then there is a reason for not choosing B”. Observe that strong

Defeasible Decision Making in a Multi-Robot Environment 153

: LA 2 »
negation (“~") is allowed in the head of program rules, and hence may be used
to represent contradictory knowledge.

better(R, B, Oboz) — nearer.robot(R, B, Obox) (1)
better(R, B, Obox) —< nearest.robot(R, B) (2)
better(R, B, Oboz) — smaller(B, Oboxzx) (3)
better(R, B, Oboz) — nearer.store(B, Oboz) (4)
~better(R, B, Obox) — nearer_robot(R, Oboz, B) (5)
~better(R, B, Oboz) — nearest_robot(R, Oboz),dif f(B, Oboz) (6)
~better(R, B, Oboz) — nearer_store(Oboz, B) (7)
~better (R, B, Oboz) — smaller(Oboz, B) (8)
~better(R, B, Obozx) — same.properties(R, Oboz, B) (9)
~better(R, Obox, B) — same._properties(R, Oboz, B) (10)

choose(R, B) — better(R, B, Obox)
~choose(RR, B) = better(R, Oboz, B)

~choose(R, B) — better(R, B, Oboz), better(R, BetterB, B),dif f(Oboz, BetterB) (13)
choose(R, B)—< same_properties(R, Oboz, B)

14
~choose(R, B)— dif f robot(R, Or), better(Or, B,), choose(R, Obozx), dif f(B, Oboz) gls;
choose(R, B) — unique(B) (16)
~choose(R, B) — on(Oboz, B) (17)
~choose(R, B) — carrying(Or, B) (18)

Fig.2. P, = (I, Ax)

In DeLP, to deal with contradictory and dynamic information, arguments for
conflicting pieces of information are built and then compared to decide which
one prevails. An argument for a literal L, denoted (A, L), is a minimal set of
defeasible rules ACA, such that A4 U IT is non-contradictory and there is a

derivation for L from A U IT. TR _ T
For instance, let us consider the situation depicted in Fig. 1(a), where there

is a single robot (khepl), a medium size box (boz3) near to the store, and a big
box (boz2) near to both khepl and the store. There is also a small box (bozl)
far from both, the store and khepl. In this scenario, the following two arguments
‘can be built from program P, (Fig. 2)s
it { choose(khepl, boz2) — better(khepl, boz2, box3) }
L5 better(khepl, boz2, box3) —< nearer robot(khepl, boz?2, boz3)

A, = ~choose(khepl, boz2) —< better(khepl, box3, box2)
2= better(khepl, box3, boz2) — smaller(boz3, box?2)

In DeLP, to establish if (A, L) is a non-defeated argument, argument rebut-
tals or counter-arguments that could be defeaters for (A, L) are considered, i.e.,
counter-arguments that by some criterion are preferred to (A, L). For example,
Aj is a counter-argument for Ay, and wvice versa. Since counter-arguments are
arguments, defeaters for them may exist, and defeaters for these defeaters, and
so on. Thus, a sequence of arguments called argumentation line is constructed,
where each argument defeats its predecessor in the line (for a detailed expla-
nation of this dialectical process see [10]). The prevailing argument provides a
warrant for the information it supports. In DeLP, a literal L is warranted from
(I1, 4) if a non-defeated argument A supporting L exists. For instance, A; and
Ay are two conflicting arguments and, as will be explained next, A; is a proper
defeater for Aj, thus warranting the literal choose(khepl, boz2).

In DeLP, the comparison criterion among arguments can be established in
a modular way. Thus, an appropriate domain-dependent criterion can be used.
The criterion that we will use in our approach is defined next.

154 Edgardo Ferretti, Nicolas Rotstein, Marcelo Errecalde, Alejandro Garcia, et al.

Definition 1“(L—order). Let P be a DeLP program and lits(P). the set of
literals in P. An L-order over P is a partial order over the elements of lits(P).

Regarding physical aspects of the robots, their autonomy is limited, and
they cannot measure the state of their batteries. Because of this drawback, a
greedy strategy is used to select the next box. Therefore, the robot will prefer
its nearer bozes, then the bozes nearer to the store, and finally the smaller ones.
These preferences will be explicitly established using a preference order among
the literals smaller, nearer_store, nearer_robot and nearest_robot. As will be
shown below. an L-order must be provided as a set of facts within the program.
These facts are written as X > Y, stating that a literal X is preferred to a literal
Y. and they will be used to decide when an argument is better than another.
In particular, the L-order defined in Fig. 3 represents the robots preferences
over boxes, i.e., it shows the L-order defined over program P, (Fig. 2), used
in our application examples. Based on a given L-order, the following argument
comparison criterion can be defined.

Definition 2. Let P = (II,A) be a DeLP-program and let “<” be an L-order
over P. Given two argument structures (A1, h1) and (A2, h2), the argument
(A1, hy) will be preferred over (Aa, ho) iff:

1. there are two literals L1 and Lo such that Ly €7 Ay, Ly €* Ay, Ly < Ly, and
9. there are no literals L, and L} such that L} €* A1, Ly € Az, and Bl L
where L €* A iff there ezists a defeasible rule (Lo—<Ly,La,...;Ly) in A and
L=L; for somei (0 <i<mn).

On the basis of this criterion, defeaters can be either proper or blocking.
Given an argument comparison criterion C, an argument A;, and a counter-
argument A, for it: Az is a proper defeater for A; iff A, is better than A; wrt.
C: A, is a blocking defeater for A; iff neither of both is better than the other
wrt. C; finally, As is not a defeater for A; iff A; is better than Ay wrt. C.

In DeLP, a query @ has four possible answers: YES, if Q is warranted; NO, if
the complement of @ is warranted; UNDECIDED, if neither @ nor its complement
are warranted; and UNKNOWN, if @ is not in the signature of the program.

nearest_robot(R, Z) > nearer_robot(R, X,Y) (19) nearer_store(Z, X) > smaller(X,Y) (24)
nearer_robot(R, Z, X) > nearer_store(X,Y) (20) nearer_robot(R, Z, X) > smaller(X, Y) (25)

nearer_robot(R, Z,Y) > smaller(X, Z) (21) nearerstore(Z, X) > smaller(Y, Z) (26)
nearer_robot(R, Z,Y) > nearer_store(X, Z) (22) nearest_robot(R, Z) > smaller(X, Y) (27)
nearest_robot(R, Z) > nearer_store(X,Y) (23) smaller(Z, X) > smaller(X,Y) (28)

Fig. 3. L-order over lits(Pk)

3 Selecting Boxes through Argumentation

In classical decision making domains it is usually assumed that the agent’s choice
behavior is modeled with a binary preference relation 2 where, T 2 y means that
“z is at least as good as y”. From 2 we can derive the strict preference relation

Defeasible Decision Making in a Multi-Robot Environment 155

>4 and the indifference relation ~.5 It is common to require the preference rela-
tion 2 to be rational (complete and transitive) and this is a necessary condition
if 2Z will be represented by a utility function. According to this preference-based
approach (PBA), we should prove that the DeLP-program of Fig. 2 and the ar-
gumentation process involved when comparing two boxes, implement an implicit
rational preference relation between any pair of alternatives (boxes) that could
be presented to the robot. Despite of the relevance of the PBA from a theoretical
point of view, an analysis of this type is beyond the scope of this paper. Besides,
it is not always guaranteed that this approach accurately reflects the decision
making capabilities of agents facing decision problems of the real world.$

In our work, we attempt to show how flexible can be an approach based on
defeasible argumentation when new and changing information has to be consid-
ered during the decision making process. For this reason, the static properties
of the preferences of our robots are not so important, and it should be useful to
directly consider the choice behavior of the robots and to analyze the dynamics
of the decision processes, when new alternatives have to be considered due to
changes in the environment or when new information is available to the robot.
From this point of view, an interesting and more flexible formal model of theory
of decision making, called choice-based approach [11] provides us more adequate
tools for evaluating the dynamics involved in the decisions of the robot.

The choice-based approach (CBA) takes the individual’s choice behavior as a
primitive object, which is represented by means of a choice structure (B,C(-))
where B is a family (a set) of subsets of X (the set of possible alternatives).
Intuitively, each set B € B (where B C X) represents each set of alternatives (or
choice experiments) that can be conceivably posed to the decision maker. In this
way, if X = {z,y,2} and B = {{z,y},{z,y,2}}, we will assume that the sets
{z,y} and {z,y, 2} are valid choice experiments to be presented to the decision
maker. C(-) is a choice rule (a correspondence) which basically assigns to each
set of alternatives B € B a non-empty set that represents the alternatives that
the decision maker might choose when presented the alternatives in B. We can
note that C(B) C B for every B € B and when C(B) contains a single element,
this element represents the individual’s choice from among the alternatives in
B. The C(B) set may, however, contain more than one element and in this case
they represent the acceptable alternatives in B for the agent.

A central assumption in this approach, the weak aziom of revealed prefer-
ence (WARP), imposes an element of consistency on choice behavior in a sense
paralleling the rationality assumptions of the PBA. Intuitively, the WARP prin-
ciple reflects the expectation that an individual’s observed choices will display a
certain amount of consistency. For example, if an individual chooses alternative
z (and only that) when facing the alternatives {z,y}, we would be surprised to

4 Defined as £ > y ¢ z = y but not y = = and read “z is preferred to y"

® Defined as ~ y & z >~ y and y %~ z and read “z is indifferent to y”

8 It is well known in the decision theory community that completeness and transitivity
assumptions are usually very hard to satisfy in real world agents when evaluating
alternatives far from common experience [11].

156 Edgardo Ferretti, Nicolas Rotstein, Marcelo Errecalde, Alejandro Garcia, et al.

see him choose y when faced the alternatives {z,y, z}. More formally, the weak
axiom postulates that “if there is some choice experiment B € B such that z
and y are presented as alternatives (z,y € B) and “z is revealed at least as good
as y (z € C(B)) then it does not exist other choice experiment B’ € B where
“y is revealed preferred to x (z,y € B', y € C(B') and z ¢ C(B')).

In our work, the robots are essentially facing a discrete multi-attribute deci-
sion problem, where each alternative (box) would represent a complete assign-
ment of attribute values. The set X of alternatives available to the robots would
be represented by the properties associated to- the boxes to be considered in
the decision process. For this reason, we will use the notation Tpor, to denote
the description of the attributes corresponding to box boz;, e.g., “near to the
robot,” “near to the store,” etc.

It is direct to note the similarities of our approach with the scenario assumed
in the CBA: where the choose/2 predicate (Fig. 2) would play the role of the
choice rule C(-). In this case, if n boxes boz1, .. .,boxn are present in the environ-
ment, the robot faces a choice experiment with n alternatives [y ko Db
with the properties corresponding to each box present in the environment. In this
context, when the DeLP answer to the query choose(R, bozy) is YES, it should
be interpreted as saying that the properties of bozy make it an acceptable al-
ternative for the robot R, or more formally, the robot R has a choice rule C(-)
such that Zpoz; € C({Tbozys- - - » Tbozn }). From this perspective, is direct that the
WARP principle can be easily restated in terms of the choose predicate. We can
say in this case, that choose/2 satisfies the weak axiom of revealed preference if
every time that two boxes with attributes x; and zj are considered and choose
answers YES to the box with attributes z;, it does not exist another situation
where two boxes with the same attributes are considered and the answer of
choose for z; is YES and it does not respond YES for the box z;.

Below, we show through several examples how the robots react in different
situations that might arise in our dynamic application domain. Besides, it will
be pointed out how the robots decisions respect the WARP principle.

Ezample 1. Let us consider first a simple situation (Fig. 1(a)) with one robot
(khepl) and three boxes: bozl (small), boz2 (big) and boz3 (medium). Here,
boz2 and boz3 are near to the store, boz2 is near to the robot, and borl is far
from both, robot and store. Considering khepl’s preferences (Fig. 3) boz2 should
be chosen because, despite of its size, is the only box near to the robot and also
to the store. The robot’s perception with regards to this situation is the set:

Hu=

smaller(boz1,box2), nearer-store(boz2, boxl), nearer-robot(khepl, boz2, boxz3),
smaller(bozl, box3), nearer_store(box3, borl), nearer_robot(khepl, box2, boxrl),
smaller(boz3, box2)

The DeLP-program of khepl includes Py, IT, and the L-order of Fig. 3. From

this program, DeLP builds the following undefeated arguments:
e ~choose(khepl, box1) — better(khepl, boz2, box1)
L1 =9 better(khepl, boa2, boxl) —< nearer_store(box2, boxl)
choose(khepl, box2) —= better(khepl, box2, boxl) }

Arz = { better(khepl, box2.boxl) —= nearer_store(box2, boxl)

Defeasible Decision Making in a Multi-Robot Environment 157

Ay = | ~choose(khepl, box3) — better(khepl, boz2, boz3)
13 = better(khepl, box2, box3) —< nearer_robot(khepl, boz2, boz3)

Hence, as expected from the preferences encoded in Fig. 3, the DeLLP an-
swer for choose(khepl,bozxl) is NO, for choose(khepl, boz2) is YES, and for
choose(khepl, boz3) is NO.

Ezample 2. In order to illustrate how changes in a dynamic environment are
handled by the DeLP-program Py, consider that in the scenario depicted in
Fig. 1(a) a new medium size box (boz4) is placed on top of boz2. It is clear that
boz2 is no longer the best choice, and the robot should select boz4. In this new
scenario, the fact on(boz4, box2) is added, and rule (17) blocks any argument sup-
porting choose(khepl, boz2). Hence, the DeLP answer for choose(khepl, boz2)
is NO, whereas choose(khepl, boz4) returns YEs.

Ezample 3. Consider the situation of Fig. 1(b), with one robot (khepl) and four
boxes: bozl (small), boz2 (small), boz3 (medium) and boz4 (big). Here, boz1 and
boz2 are near to the robot and to the store, boz3 is far from the robot and near
to the store, and boz4 is far from both, robot and store. The robot’s perception
is:

smaller(boxl. box3), smaller(boz1, boz4),
smaller(boz2, box3), smaller(boz2, bozd),
smaller(boz3, box4), nearer.store(bozl, bozd),
1, = | nearer.store(boz2, bozd), nearer_store(boz3, boz4),
b= nearest._robot(khepl, bozl), nearest_robot(khepl, boz2),
nearer.robot(khepl, bozl, boz3), nearer_robot(khepl, boz2, boz3),

nearer.robot(khepl, bozl, bozd), nearer.robot(khepl, boz2, boz4),
same_properties(khepl, bozl, box2)

It is clear that bozl and boz2 are better alternatives than boz3 and boz4,
hence, the latter ones should not be chosen. Nonetheless, as boxl and boz?2 have
the same properties (from khepl’s point of view) these alternatives should be
indifferent to khepl. The DeLP-program of khepl will include Py, IT, and the
L-order of Fig. 3. From this program, the answer for both choose(khepl, bozxl)
and choose(khepl, boz2) will be YES, representing that the robot presents equal
preference (i.e., indifference) to both boxes. As it was expected, the answers for
choose(khepl, box3) and choose(khepl, boz4) will be NO.

Ezample 4. Taking into account the WARP principle mentioned at the begin-
ning of this section, the choices made by khepl in Ex. 3 should not be changed

if boz3 and bor4 were removed from the scenario. This is because these boxes
(alternatives) are worse than bozl and boz2, which have the same properties in-

dependently of the presence or absence of other boxes. If we consider a scenario
that only includes bozl and boz2, the robot’s perception would be:

I, = | nearest.robot(khepl, bozl), nearest_robot(khepl, boz2),
b= same_properties(khepl, bozl, boz2)

From the DeLP-program including Pg, ITy and the L-order of Fig. 3, as
expected, the answer to choose(khepl,bozl) and choose(khepl, boz2) is YES.

Ezample 5. As shown in Ex. 4, some decisions should be maintained if the
changes in the world are not significant to the robot’s decision-making policy.

158 Edgardo Ferretti, Nicolas Rotstein, Marcelo Errecalde, Alejandro Garcia, et al.

Nonetheless, if we consider the situation shown in Fig. 1(c), where a new robot
(khep2) appears in the environment, this fact might modify khepl’s choice de-
pending on khep2’s position. Now, bozl is the nearest box of khep2 and from
its point of view boz1 is its best choice. In face of this new evidence, khepl still
have a nearest box (box2) to choose instead of bozl. Since the only difference
from the scenario depicted in Fig. 1(b) is the presence of khep2, the perception
now is IT, = IT, U ¥, where:
nearest_robot(khep2, boxrl), nearer_robot(khep2, box1, bor2),
Cidp { nearer_robot(khep2, borl, box3), nearer_robot(khep2, bozxl, bord) }

At first sight, the alternatives (boxes) available to khepl seem to be the same
that in Ex. 3. Nevertheless, with the presence of khep2 in the environment, the
alternative associated with bozl changes because, as represented in &, bozrl has
the new attribute of being the nearest box of another robot (khep2).

Note that rule (15) plays a fundamental role, because it allows the robots
to choose a certain box, considering the other robots’ preferences. Without this
rule khepl would have chosen bozl and boz2 as in Ex. 3. Then, a problematic
situation can arise if both robots intend to grab the same box.

Since both robots have the same preferences and the same perception (I1.),
their DeLP-program will include P, I1c and the L-order of Fig. 3. From this pro-
gram, the answers for choose(khepl, boz3) and choose(khepl, box4) remains be-
ing NO, whereas the answer for choose(khepl, box2) remains being YES, since the
presence of khep2 does not compromise khepl’s decision. In opposition, the query
choose(khepl, bozl) is now UNDECIDED, because it is a box that could be selected
by khep2. Regarding khep2, the DeLP answer for choose(khep2,bozl) will be
YES, and for choose(khep2,box2), choose(khep2, boz3) and choose(khep2, bozx4)
will be NO, since they do not represent good choices for this robot.

Ezample 6. Let us consider a final example regarding the situation depicted in
Fig. 1(d). As can be observed, there are three small boxes (boz1, boz2 and box3)
and two robots (khepl and khep2). All the boxes are near to the store and in
particular boz1 is near to both robots. Then, boz2 is near to khepl and far from
khep2 while boz3 is near to khep2 and far from khepl. The boxes boxl and bozx2
have the same properties from khepl’s standpoint, the same occurs with bozl
and boz3 from khep2's point of view. Since both robots can choose other boxes
besides bozl, and they are as good as bozl, intuitively the best combination
would be khepl choosing boz2 with khep2 choosing boz3. The robots’ perception
in this situation is the following set:

nearest_robot(khepl, bozxl), nearest_robot(khepl, box2),

o, = { nearest_robot(khep2, bozxl), nearest_robot(khep2, boz3), }
nearer_robot(khepl, box2, box3), nearer.robot(khep2, box3, box2),
same_properties(khepl, boxl, boz2), same_properties(khep2, box1l, box3)

From the DeLP-program that includes P, IT4 and the L-order of Fig. 3, as
expected, the answers for choose(khepl, boz2) and choose(khep2, box3) are YES,
whereas the answer for choose(khepl,boz3) and choose(khep2, box2) are NO. It
is important to note that the answer for both queries choose(khepl, bozl) and
choose(khep2, boz1) is UNDECIDED. The reason why this occurs is that DeLP
cannot build an undefeated argument to support neither choose(khepl,boxl)
nor ~choose(khepl,boxl), and the same situation holds for khep2.

Defeasible Decision Making in a Multi-Robot Environment 159

Changing Preferences

To sum up, it worths noticing that this defeasible approach to decision mak-
ing is flexible enough to easily modify preferences, and thus obtain a different
behavior from the robot. As stated in Sect. 2, in the above examples a robot
prefers its nearer boxes, then the boxes nearer to the store, and finally the
smaller ones. These preferences were explicitly established by the L-order given
in Fig. 3, but they can be replaced in a modular way. For instance, another pos-
sibility would be giving highest preference to the smallest boxes, i.e., the size
of each box would be more important than its proximity to the store or to the
robot. This would imply to change in Fig. 3 the facts (21), (24), (25), and (26)
for the following ones: smaller(Z,Y) > nearer_store(X, Z), smaller(Z,X) >
nearer_robot(R,Y, Z) and smaller(X,Y) > nearest_robot(R,Y). Taking into
account these changes, let us reconsider Ex. 1. Now, the DeLP answers to the
queries choose(khepl, boxl), choose(khepl,boz?2), and choose(khepl, boz3) will
be YES, NO, and NO, respectively. Thus, according to this new L-order, khepl
now chooses bozl (the smallest one) instead of boz2 (the nearest one).

4 Conclusions and Related Work

In this paper we have shown how a Defeasible Logic Programming approach
could be applied in a robotic domain for knowledge representation and reason-
ing about which task to perform next. Our approach considers the ability of
Defeasible Logic Programming to reason with incomplete and potentially incon-
sistent information. Through several examples we aimed to show the flexibility of
this approach to program the robots’ preference policy, by considering a simple
application domain where real Khepera 2 robots perform cleaning tasks.

In particular, in our work we follow some ideas exposed by Parsons et al. [12]
about the integration of high-level reasoning facilities with low-level robust robot
control. We share the approach of seeing the low-level module as a black box
which receives goals to be achieved from the high-level component, and plans to
reach goals are internally generated. However, our work differs from [12] in that
we do not use a BDI deliberator as high-level reasoning layer, instead we use a
non-monotonic reasoning module based on a defeasible argumentation system.

With respect to this last issue, our approach to decision making is related
to other works which use argumentative processes as a fundamental component
in the decision making of an agent [13-15]. It is important to note that these
argumentation systems have been usually integrated in software agents. On the
other hand, in our approach, defeasible argumentation is applied in a robotic
domain where uncertainty (generated by noisy sensors and effectors), changes in
the physical environment, and incomplete information about it, make this kind
of problems a more challenging test-bed for the decision processes of an agent.

Finally, since Prolog is a programming language that has already been used
to develop applications in the field of cognitive robotics [16], we will make some
final brief comments on the differences that arise when programming a cognitive
agent in Prolog with respect to DeLP. A comparison of this nature can be
rather unfair, since DeLP was intended from the beginning to be a high-level

160 Edgardo Ferretti, Nicolas Rotstein, Marcelo Errecalde, Alejandro Garcia, et al.

logic programming language for knowledge representation and reasoning. In our
approach, robots’ preferences are modeled as a partial order among literals.
Therefore, in DeLP, when these preferences are changed, it will only affect the set
of facts representing them. That is because the DeLP formalism allows for a more
modular -ay to represent knowledge. In opposition to this, in Prolog, changing
the preferences may involve checking and rewriting most of the program. Hence,
the developer would have to specify each and every scenario within which a robot
makes a certain choice.

Acknowledgment

We thank the Universidad Nacional de San Luis and the Universidad Nacional
del Sur for their unstinting support. This work is partially supported by, CON-
ICET (PIP 5050), and ANPCyT (PICT 2002, Nro.13096 and Nro.12600).

References

1. Jeffrey, R.C.: The Logic of Decision. 2nd edn. University Of Chicago Press (1990)

2. Doyle, J., Thomason, R.H.: Background to qualitative decision theory. AI Maga-
zine (1999)

3. Rao, A., Georgeff, M.: Decision procedures for BDI logics. Journal of Logic and
Computation (1998)

4. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation (1986)

5. K-Team: Khepera 2. http://www.k-team.com (2002)

6. Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots.
1998

T gstlin), T., Volpe, R., Nesnas, 1., Muts, D., Fisher, F., Engelhardt, B., Chien, S.:
Decision-making in a robotic architecture for autonomy. In: International Sympo-
sium, on A, Robotics and Automation for Space. (2001)

8. Rotstein, N., Garcia, A., Simari, G.: Reasoning from desires to intentions: A
dialectical framework. In: Proceedings of the 22nd. AAAI Conference on Artificial
Intelligence. (2007) 136-141

9. Ferretti, E., Errecalde, M., Garcia, A., Simari, G.: KheDeLP: A framework to
support defeasible logic programming for the khepera robots. In: ISRA. (2006)

10. Garcfa, A., Simari, G.: Defeasible logic programming: An argumentative approach.
Theory Practice of Logic Programming 4(1) (2004) 95-138

11. Mas-Collel, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford
University Press (1995)

12. Parsons, S., Pettersson, O., Saffiotti, A., Wooldridge, M.: Robots with the Best
of Intentions. In: Artificial Intelligence Today: Recent Trends and Developments.
Springer (1999)

13. Atkinson, K., Bench-Capon, T.J.M., Modgil, S.: Argumentation for decision sup-
port. In: DEXA. (2006) 822-831

14. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous
agents. In: AAMAS. (2003)

15. Parsons, S., Fox, J.: Argumentation and decision making: A position paper. In:
FAPR. (1996) . ’

16. Levesque, H.J., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive
robotics. In: 2nd International Cognitive Robotics Workshop. (2000)

